MakeItFrom.com
Menu (ESC)

Grade 5 Titanium vs. EN 1.4980 Stainless Steel

Grade 5 titanium belongs to the titanium alloys classification, while EN 1.4980 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 5 titanium and the bottom bar is EN 1.4980 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 8.6 to 11
17
Fatigue Strength, MPa 530 to 630
410
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 40
75
Shear Strength, MPa 600 to 710
630
Tensile Strength: Ultimate (UTS), MPa 1000 to 1190
1030
Tensile Strength: Yield (Proof), MPa 910 to 1110
680

Thermal Properties

Latent Heat of Fusion, J/g 410
300
Maximum Temperature: Mechanical, °C 330
920
Melting Completion (Liquidus), °C 1610
1430
Melting Onset (Solidus), °C 1650
1380
Specific Heat Capacity, J/kg-K 560
470
Thermal Conductivity, W/m-K 6.8
13
Thermal Expansion, µm/m-K 8.9
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 36
26
Density, g/cm3 4.4
7.9
Embodied Carbon, kg CO2/kg material 38
6.0
Embodied Energy, MJ/kg 610
87
Embodied Water, L/kg 200
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100 to 110
150
Resilience: Unit (Modulus of Resilience), kJ/m3 3980 to 5880
1180
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 62 to 75
36
Strength to Weight: Bending, points 50 to 56
28
Thermal Diffusivity, mm2/s 2.7
3.5
Thermal Shock Resistance, points 76 to 91
22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.5 to 6.8
0 to 0.35
Boron (B), % 0
0.0030 to 0.010
Carbon (C), % 0 to 0.080
0.030 to 0.080
Chromium (Cr), % 0
13.5 to 16
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
49.2 to 58.5
Manganese (Mn), % 0
1.0 to 2.0
Molybdenum (Mo), % 0
1.0 to 1.5
Nickel (Ni), % 0
24 to 27
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 87.4 to 91
1.9 to 2.3
Vanadium (V), % 3.5 to 4.5
0.1 to 0.5
Yttrium (Y), % 0 to 0.0050
0
Residuals, % 0 to 0.4
0