MakeItFrom.com
Menu (ESC)

Grade 5 Titanium vs. EN AC-46400 Aluminum

Grade 5 titanium belongs to the titanium alloys classification, while EN AC-46400 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 5 titanium and the bottom bar is EN AC-46400 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
72
Elongation at Break, % 8.6 to 11
1.1 to 1.7
Fatigue Strength, MPa 530 to 630
75 to 85
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
27
Tensile Strength: Ultimate (UTS), MPa 1000 to 1190
170 to 310
Tensile Strength: Yield (Proof), MPa 910 to 1110
110 to 270

Thermal Properties

Latent Heat of Fusion, J/g 410
520
Maximum Temperature: Mechanical, °C 330
170
Melting Completion (Liquidus), °C 1610
610
Melting Onset (Solidus), °C 1650
570
Specific Heat Capacity, J/kg-K 560
890
Thermal Conductivity, W/m-K 6.8
130
Thermal Expansion, µm/m-K 8.9
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
33
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
110

Otherwise Unclassified Properties

Base Metal Price, % relative 36
9.5
Density, g/cm3 4.4
2.7
Embodied Carbon, kg CO2/kg material 38
7.8
Embodied Energy, MJ/kg 610
150
Embodied Water, L/kg 200
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100 to 110
1.7 to 4.9
Resilience: Unit (Modulus of Resilience), kJ/m3 3980 to 5880
82 to 500
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 35
52
Strength to Weight: Axial, points 62 to 75
18 to 32
Strength to Weight: Bending, points 50 to 56
26 to 38
Thermal Diffusivity, mm2/s 2.7
55
Thermal Shock Resistance, points 76 to 91
7.8 to 14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.5 to 6.8
85.4 to 90.5
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
0.8 to 1.3
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
0 to 0.8
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0
0.25 to 0.65
Manganese (Mn), % 0
0.15 to 0.55
Nickel (Ni), % 0
0 to 0.2
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Silicon (Si), % 0
8.3 to 9.7
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 87.4 to 91
0 to 0.2
Vanadium (V), % 3.5 to 4.5
0
Yttrium (Y), % 0 to 0.0050
0
Zinc (Zn), % 0
0 to 0.8
Residuals, % 0 to 0.4
0 to 0.25