MakeItFrom.com
Menu (ESC)

Grade 5 Titanium vs. Grade CU5MCuC Nickel

Grade 5 titanium belongs to the titanium alloys classification, while grade CU5MCuC nickel belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is grade 5 titanium and the bottom bar is grade CU5MCuC nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 8.6 to 11
22
Fatigue Strength, MPa 530 to 630
170
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
77
Tensile Strength: Ultimate (UTS), MPa 1000 to 1190
580
Tensile Strength: Yield (Proof), MPa 910 to 1110
270

Thermal Properties

Latent Heat of Fusion, J/g 410
310
Maximum Temperature: Mechanical, °C 330
980
Melting Completion (Liquidus), °C 1610
1420
Melting Onset (Solidus), °C 1650
1370
Specific Heat Capacity, J/kg-K 560
460
Thermal Expansion, µm/m-K 8.9
13

Otherwise Unclassified Properties

Base Metal Price, % relative 36
45
Density, g/cm3 4.4
8.2
Embodied Carbon, kg CO2/kg material 38
7.7
Embodied Energy, MJ/kg 610
110
Embodied Water, L/kg 200
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100 to 110
110
Resilience: Unit (Modulus of Resilience), kJ/m3 3980 to 5880
190
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 62 to 75
20
Strength to Weight: Bending, points 50 to 56
19
Thermal Shock Resistance, points 76 to 91
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.080
0 to 0.050
Chromium (Cr), % 0
19.5 to 23.5
Copper (Cu), % 0
1.5 to 3.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
22.2 to 37.9
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 0
38 to 44
Niobium (Nb), % 0
0.6 to 1.2
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 87.4 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Yttrium (Y), % 0 to 0.0050
0
Residuals, % 0 to 0.4
0