MakeItFrom.com
Menu (ESC)

Grade 5 Titanium vs. Nickel 601

Grade 5 titanium belongs to the titanium alloys classification, while nickel 601 belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 5 titanium and the bottom bar is nickel 601.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 8.6 to 11
10 to 38
Fatigue Strength, MPa 530 to 630
220 to 380
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
76
Shear Strength, MPa 600 to 710
440 to 530
Tensile Strength: Ultimate (UTS), MPa 1000 to 1190
660 to 890
Tensile Strength: Yield (Proof), MPa 910 to 1110
290 to 800

Thermal Properties

Latent Heat of Fusion, J/g 410
320
Maximum Temperature: Mechanical, °C 330
1100
Melting Completion (Liquidus), °C 1610
1410
Melting Onset (Solidus), °C 1650
1360
Specific Heat Capacity, J/kg-K 560
470
Thermal Conductivity, W/m-K 6.8
11
Thermal Expansion, µm/m-K 8.9
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 36
49
Density, g/cm3 4.4
8.3
Embodied Carbon, kg CO2/kg material 38
8.0
Embodied Energy, MJ/kg 610
110
Embodied Water, L/kg 200
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100 to 110
86 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 3980 to 5880
210 to 1630
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
23
Strength to Weight: Axial, points 62 to 75
22 to 30
Strength to Weight: Bending, points 50 to 56
20 to 25
Thermal Diffusivity, mm2/s 2.7
2.8
Thermal Shock Resistance, points 76 to 91
17 to 23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.5 to 6.8
1.0 to 1.7
Carbon (C), % 0 to 0.080
0 to 0.1
Chromium (Cr), % 0
21 to 25
Copper (Cu), % 0
0 to 1.0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
7.7 to 20
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
58 to 63
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 87.4 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Yttrium (Y), % 0 to 0.0050
0
Residuals, % 0 to 0.4
0

Comparable Variants