MakeItFrom.com
Menu (ESC)

Grade 5 Titanium vs. SAE-AISI 9255 Steel

Grade 5 titanium belongs to the titanium alloys classification, while SAE-AISI 9255 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 5 titanium and the bottom bar is SAE-AISI 9255 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 8.6 to 11
21
Fatigue Strength, MPa 530 to 630
270
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 40
72
Shear Strength, MPa 600 to 710
430
Tensile Strength: Ultimate (UTS), MPa 1000 to 1190
680
Tensile Strength: Yield (Proof), MPa 910 to 1110
390

Thermal Properties

Latent Heat of Fusion, J/g 410
280
Maximum Temperature: Mechanical, °C 330
400
Melting Completion (Liquidus), °C 1610
1430
Melting Onset (Solidus), °C 1650
1390
Specific Heat Capacity, J/kg-K 560
480
Thermal Conductivity, W/m-K 6.8
46
Thermal Expansion, µm/m-K 8.9
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 36
2.0
Density, g/cm3 4.4
7.7
Embodied Carbon, kg CO2/kg material 38
1.5
Embodied Energy, MJ/kg 610
20
Embodied Water, L/kg 200
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100 to 110
120
Resilience: Unit (Modulus of Resilience), kJ/m3 3980 to 5880
400
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 62 to 75
24
Strength to Weight: Bending, points 50 to 56
22
Thermal Diffusivity, mm2/s 2.7
13
Thermal Shock Resistance, points 76 to 91
21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.080
0.51 to 0.59
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
96.2 to 97
Manganese (Mn), % 0
0.7 to 1.0
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
1.8 to 2.2
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 87.4 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Yttrium (Y), % 0 to 0.0050
0
Residuals, % 0 to 0.4
0