MakeItFrom.com
Menu (ESC)

Grade 5 Titanium vs. C82000 Copper

Grade 5 titanium belongs to the titanium alloys classification, while C82000 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade 5 titanium and the bottom bar is C82000 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 8.6 to 11
8.0 to 20
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 40
45
Tensile Strength: Ultimate (UTS), MPa 1000 to 1190
350 to 690
Tensile Strength: Yield (Proof), MPa 910 to 1110
140 to 520

Thermal Properties

Latent Heat of Fusion, J/g 410
220
Maximum Temperature: Mechanical, °C 330
220
Melting Completion (Liquidus), °C 1610
1090
Melting Onset (Solidus), °C 1650
970
Specific Heat Capacity, J/kg-K 560
390
Thermal Conductivity, W/m-K 6.8
260
Thermal Expansion, µm/m-K 8.9
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
45
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
46

Otherwise Unclassified Properties

Base Metal Price, % relative 36
60
Density, g/cm3 4.4
8.9
Embodied Carbon, kg CO2/kg material 38
5.0
Embodied Energy, MJ/kg 610
77
Embodied Water, L/kg 200
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100 to 110
51 to 55
Resilience: Unit (Modulus of Resilience), kJ/m3 3980 to 5880
80 to 1120
Stiffness to Weight: Axial, points 13
7.5
Stiffness to Weight: Bending, points 35
18
Strength to Weight: Axial, points 62 to 75
11 to 22
Strength to Weight: Bending, points 50 to 56
12 to 20
Thermal Diffusivity, mm2/s 2.7
76
Thermal Shock Resistance, points 76 to 91
12 to 24

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0 to 0.1
Beryllium (Be), % 0
0.45 to 0.8
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 0
0 to 0.1
Cobalt (Co), % 0
2.2 to 2.7
Copper (Cu), % 0
95.2 to 97.4
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
0 to 0.1
Lead (Pb), % 0
0 to 0.020
Nickel (Ni), % 0
0 to 0.2
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Silicon (Si), % 0
0 to 0.15
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 87.4 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Yttrium (Y), % 0 to 0.0050
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5