MakeItFrom.com
Menu (ESC)

Grade 5 Titanium vs. S44635 Stainless Steel

Grade 5 titanium belongs to the titanium alloys classification, while S44635 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 5 titanium and the bottom bar is S44635 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 8.6 to 11
23
Fatigue Strength, MPa 530 to 630
390
Poisson's Ratio 0.32
0.27
Rockwell C Hardness 33
24
Shear Modulus, GPa 40
81
Shear Strength, MPa 600 to 710
450
Tensile Strength: Ultimate (UTS), MPa 1000 to 1190
710
Tensile Strength: Yield (Proof), MPa 910 to 1110
580

Thermal Properties

Latent Heat of Fusion, J/g 410
300
Maximum Temperature: Mechanical, °C 330
1100
Melting Completion (Liquidus), °C 1610
1460
Melting Onset (Solidus), °C 1650
1420
Specific Heat Capacity, J/kg-K 560
470
Thermal Conductivity, W/m-K 6.8
16
Thermal Expansion, µm/m-K 8.9
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 36
22
Density, g/cm3 4.4
7.8
Embodied Carbon, kg CO2/kg material 38
4.4
Embodied Energy, MJ/kg 610
62
Embodied Water, L/kg 200
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100 to 110
150
Resilience: Unit (Modulus of Resilience), kJ/m3 3980 to 5880
810
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 62 to 75
25
Strength to Weight: Bending, points 50 to 56
23
Thermal Diffusivity, mm2/s 2.7
4.4
Thermal Shock Resistance, points 76 to 91
23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.080
0 to 0.025
Chromium (Cr), % 0
24.5 to 26
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
61.5 to 68.5
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
3.5 to 4.5
Nickel (Ni), % 0
3.5 to 4.5
Niobium (Nb), % 0
0.2 to 0.8
Nitrogen (N), % 0 to 0.050
0 to 0.035
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 87.4 to 91
0.2 to 0.8
Vanadium (V), % 3.5 to 4.5
0
Yttrium (Y), % 0 to 0.0050
0
Residuals, % 0 to 0.4
0