MakeItFrom.com
Menu (ESC)

Grade 6 Titanium vs. 4006 Aluminum

Grade 6 titanium belongs to the titanium alloys classification, while 4006 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade 6 titanium and the bottom bar is 4006 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
69
Elongation at Break, % 11
3.4 to 24
Fatigue Strength, MPa 290
35 to 110
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 39
26
Shear Strength, MPa 530
70 to 91
Tensile Strength: Ultimate (UTS), MPa 890
110 to 160
Tensile Strength: Yield (Proof), MPa 840
62 to 140

Thermal Properties

Latent Heat of Fusion, J/g 410
410
Maximum Temperature: Mechanical, °C 310
160
Melting Completion (Liquidus), °C 1580
640
Melting Onset (Solidus), °C 1530
620
Specific Heat Capacity, J/kg-K 550
900
Thermal Conductivity, W/m-K 7.8
220
Thermal Expansion, µm/m-K 9.4
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
56
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
180

Otherwise Unclassified Properties

Base Metal Price, % relative 36
9.0
Density, g/cm3 4.5
2.7
Embodied Carbon, kg CO2/kg material 30
8.1
Embodied Energy, MJ/kg 480
150
Embodied Water, L/kg 190
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
5.1 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 3390
28 to 130
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
50
Strength to Weight: Axial, points 55
11 to 16
Strength to Weight: Bending, points 46
19 to 24
Thermal Diffusivity, mm2/s 3.2
89
Thermal Shock Resistance, points 65
4.9 to 7.0

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 4.0 to 6.0
97.4 to 98.7
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 0
0 to 0.2
Copper (Cu), % 0
0 to 0.1
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.5
0.5 to 0.8
Magnesium (Mg), % 0
0 to 0.010
Manganese (Mn), % 0
0 to 0.050
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.2
0
Silicon (Si), % 0
0.8 to 1.2
Tin (Sn), % 2.0 to 3.0
0
Titanium (Ti), % 89.8 to 94
0
Zinc (Zn), % 0
0 to 0.050
Residuals, % 0 to 0.4
0 to 0.15