MakeItFrom.com
Menu (ESC)

Grade 6 Titanium vs. 6060 Aluminum

Grade 6 titanium belongs to the titanium alloys classification, while 6060 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade 6 titanium and the bottom bar is 6060 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
68
Elongation at Break, % 11
9.0 to 16
Fatigue Strength, MPa 290
37 to 70
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 39
26
Shear Strength, MPa 530
86 to 130
Tensile Strength: Ultimate (UTS), MPa 890
140 to 220
Tensile Strength: Yield (Proof), MPa 840
71 to 170

Thermal Properties

Latent Heat of Fusion, J/g 410
400
Maximum Temperature: Mechanical, °C 310
160
Melting Completion (Liquidus), °C 1580
660
Melting Onset (Solidus), °C 1530
610
Specific Heat Capacity, J/kg-K 550
900
Thermal Conductivity, W/m-K 7.8
210
Thermal Expansion, µm/m-K 9.4
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
54
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
180

Otherwise Unclassified Properties

Base Metal Price, % relative 36
9.5
Density, g/cm3 4.5
2.7
Embodied Carbon, kg CO2/kg material 30
8.3
Embodied Energy, MJ/kg 480
150
Embodied Water, L/kg 190
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
13 to 24
Resilience: Unit (Modulus of Resilience), kJ/m3 3390
37 to 210
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
50
Strength to Weight: Axial, points 55
14 to 23
Strength to Weight: Bending, points 46
22 to 30
Thermal Diffusivity, mm2/s 3.2
85
Thermal Shock Resistance, points 65
6.3 to 9.9

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 4.0 to 6.0
97.9 to 99.3
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 0
0 to 0.050
Copper (Cu), % 0
0 to 0.1
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.5
0.1 to 0.3
Magnesium (Mg), % 0
0.35 to 0.6
Manganese (Mn), % 0
0 to 0.1
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.2
0
Silicon (Si), % 0
0.3 to 0.6
Tin (Sn), % 2.0 to 3.0
0
Titanium (Ti), % 89.8 to 94
0 to 0.1
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0 to 0.4
0 to 0.15