MakeItFrom.com
Menu (ESC)

Grade 6 Titanium vs. 6066 Aluminum

Grade 6 titanium belongs to the titanium alloys classification, while 6066 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is grade 6 titanium and the bottom bar is 6066 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
70
Elongation at Break, % 11
7.8 to 17
Fatigue Strength, MPa 290
94 to 130
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 39
26
Shear Strength, MPa 530
95 to 240
Tensile Strength: Ultimate (UTS), MPa 890
160 to 400
Tensile Strength: Yield (Proof), MPa 840
93 to 360

Thermal Properties

Latent Heat of Fusion, J/g 410
410
Maximum Temperature: Mechanical, °C 310
170
Melting Completion (Liquidus), °C 1580
650
Melting Onset (Solidus), °C 1530
560
Specific Heat Capacity, J/kg-K 550
890
Thermal Conductivity, W/m-K 7.8
150
Thermal Expansion, µm/m-K 9.4
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
40
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
130

Otherwise Unclassified Properties

Base Metal Price, % relative 36
9.5
Density, g/cm3 4.5
2.8
Embodied Carbon, kg CO2/kg material 30
8.3
Embodied Energy, MJ/kg 480
150
Embodied Water, L/kg 190
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
23 to 52
Resilience: Unit (Modulus of Resilience), kJ/m3 3390
61 to 920
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
49
Strength to Weight: Axial, points 55
16 to 39
Strength to Weight: Bending, points 46
23 to 43
Thermal Diffusivity, mm2/s 3.2
61
Thermal Shock Resistance, points 65
6.9 to 17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 4.0 to 6.0
93 to 97
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 0
0 to 0.4
Copper (Cu), % 0
0.7 to 1.2
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.5
0 to 0.5
Magnesium (Mg), % 0
0.8 to 1.4
Manganese (Mn), % 0
0.6 to 1.1
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.2
0
Silicon (Si), % 0
0.9 to 1.8
Tin (Sn), % 2.0 to 3.0
0
Titanium (Ti), % 89.8 to 94
0 to 0.2
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0 to 0.4
0 to 0.15