MakeItFrom.com
Menu (ESC)

Grade 6 Titanium vs. AISI 201LN Stainless Steel

Grade 6 titanium belongs to the titanium alloys classification, while AISI 201LN stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 6 titanium and the bottom bar is AISI 201LN stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 11
25 to 51
Fatigue Strength, MPa 290
340 to 540
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 39
77
Shear Strength, MPa 530
530 to 680
Tensile Strength: Ultimate (UTS), MPa 890
740 to 1060
Tensile Strength: Yield (Proof), MPa 840
350 to 770

Thermal Properties

Latent Heat of Fusion, J/g 410
280
Maximum Temperature: Mechanical, °C 310
880
Melting Completion (Liquidus), °C 1580
1410
Melting Onset (Solidus), °C 1530
1370
Specific Heat Capacity, J/kg-K 550
480
Thermal Conductivity, W/m-K 7.8
15
Thermal Expansion, µm/m-K 9.4
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 36
12
Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 30
2.6
Embodied Energy, MJ/kg 480
38
Embodied Water, L/kg 190
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
230 to 310
Resilience: Unit (Modulus of Resilience), kJ/m3 3390
310 to 1520
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 55
27 to 38
Strength to Weight: Bending, points 46
24 to 30
Thermal Diffusivity, mm2/s 3.2
4.0
Thermal Shock Resistance, points 65
16 to 23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 4.0 to 6.0
0
Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 0
16 to 17.5
Copper (Cu), % 0
0 to 1.0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.5
67.9 to 73.5
Manganese (Mn), % 0
6.4 to 7.5
Nickel (Ni), % 0
4.0 to 5.0
Nitrogen (N), % 0 to 0.030
0.1 to 0.25
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 2.0 to 3.0
0
Titanium (Ti), % 89.8 to 94
0
Residuals, % 0 to 0.4
0