MakeItFrom.com
Menu (ESC)

Grade 6 Titanium vs. AISI 309 Stainless Steel

Grade 6 titanium belongs to the titanium alloys classification, while AISI 309 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 6 titanium and the bottom bar is AISI 309 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 11
34 to 47
Fatigue Strength, MPa 290
250 to 280
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 39
78
Shear Strength, MPa 530
420 to 470
Tensile Strength: Ultimate (UTS), MPa 890
600 to 710
Tensile Strength: Yield (Proof), MPa 840
260 to 350

Thermal Properties

Latent Heat of Fusion, J/g 410
290
Maximum Temperature: Mechanical, °C 310
980
Melting Completion (Liquidus), °C 1580
1450
Melting Onset (Solidus), °C 1530
1400
Specific Heat Capacity, J/kg-K 550
480
Thermal Conductivity, W/m-K 7.8
16
Thermal Expansion, µm/m-K 9.4
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 36
19
Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 30
3.6
Embodied Energy, MJ/kg 480
51
Embodied Water, L/kg 190
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
200 to 230
Resilience: Unit (Modulus of Resilience), kJ/m3 3390
170 to 310
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 55
21 to 25
Strength to Weight: Bending, points 46
20 to 23
Thermal Diffusivity, mm2/s 3.2
4.3
Thermal Shock Resistance, points 65
14 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 4.0 to 6.0
0
Carbon (C), % 0 to 0.080
0 to 0.2
Chromium (Cr), % 0
22 to 24
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.5
58 to 66
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0
12 to 15
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 2.0 to 3.0
0
Titanium (Ti), % 89.8 to 94
0
Residuals, % 0 to 0.4
0