MakeItFrom.com
Menu (ESC)

Grade 6 Titanium vs. CC761S Brass

Grade 6 titanium belongs to the titanium alloys classification, while CC761S brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 6 titanium and the bottom bar is CC761S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
110
Elongation at Break, % 11
8.7
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 39
42
Tensile Strength: Ultimate (UTS), MPa 890
540
Tensile Strength: Yield (Proof), MPa 840
340

Thermal Properties

Latent Heat of Fusion, J/g 410
260
Maximum Temperature: Mechanical, °C 310
170
Melting Completion (Liquidus), °C 1580
960
Melting Onset (Solidus), °C 1530
910
Specific Heat Capacity, J/kg-K 550
410
Thermal Conductivity, W/m-K 7.8
27
Thermal Expansion, µm/m-K 9.4
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
40
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
43

Otherwise Unclassified Properties

Base Metal Price, % relative 36
27
Density, g/cm3 4.5
8.3
Embodied Carbon, kg CO2/kg material 30
2.7
Embodied Energy, MJ/kg 480
45
Embodied Water, L/kg 190
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
41
Resilience: Unit (Modulus of Resilience), kJ/m3 3390
530
Stiffness to Weight: Axial, points 13
7.4
Stiffness to Weight: Bending, points 35
19
Strength to Weight: Axial, points 55
18
Strength to Weight: Bending, points 46
18
Thermal Diffusivity, mm2/s 3.2
8.0
Thermal Shock Resistance, points 65
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 4.0 to 6.0
0 to 0.1
Antimony (Sb), % 0
0 to 0.050
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
78 to 83
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.5
0 to 0.6
Lead (Pb), % 0
0 to 0.8
Manganese (Mn), % 0
0 to 0.2
Nickel (Ni), % 0
0 to 1.0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
3.0 to 5.0
Tin (Sn), % 2.0 to 3.0
0 to 0.3
Titanium (Ti), % 89.8 to 94
0
Zinc (Zn), % 0
8.9 to 19
Residuals, % 0 to 0.4
0