MakeItFrom.com
Menu (ESC)

Grade 6 Titanium vs. C19000 Copper

Grade 6 titanium belongs to the titanium alloys classification, while C19000 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 6 titanium and the bottom bar is C19000 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
120
Elongation at Break, % 11
2.5 to 50
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 39
43
Shear Strength, MPa 530
170 to 390
Tensile Strength: Ultimate (UTS), MPa 890
260 to 760
Tensile Strength: Yield (Proof), MPa 840
140 to 630

Thermal Properties

Latent Heat of Fusion, J/g 410
210
Maximum Temperature: Mechanical, °C 310
200
Melting Completion (Liquidus), °C 1580
1080
Melting Onset (Solidus), °C 1530
1040
Specific Heat Capacity, J/kg-K 550
390
Thermal Conductivity, W/m-K 7.8
250
Thermal Expansion, µm/m-K 9.4
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
60
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
61

Otherwise Unclassified Properties

Base Metal Price, % relative 36
31
Density, g/cm3 4.5
8.9
Embodied Carbon, kg CO2/kg material 30
2.7
Embodied Energy, MJ/kg 480
42
Embodied Water, L/kg 190
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
18 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 3390
89 to 1730
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 35
18
Strength to Weight: Axial, points 55
8.2 to 24
Strength to Weight: Bending, points 46
10 to 21
Thermal Diffusivity, mm2/s 3.2
73
Thermal Shock Resistance, points 65
9.3 to 27

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 4.0 to 6.0
0
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
96.9 to 99
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.5
0 to 0.1
Lead (Pb), % 0
0 to 0.050
Nickel (Ni), % 0
0.9 to 1.3
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0.15 to 0.35
Tin (Sn), % 2.0 to 3.0
0
Titanium (Ti), % 89.8 to 94
0
Zinc (Zn), % 0
0 to 0.8
Residuals, % 0 to 0.4
0 to 0.5