MakeItFrom.com
Menu (ESC)

Grade 6 Titanium vs. C62400 Bronze

Grade 6 titanium belongs to the titanium alloys classification, while C62400 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade 6 titanium and the bottom bar is C62400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
110
Elongation at Break, % 11
11 to 14
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 39
42
Shear Strength, MPa 530
420 to 440
Tensile Strength: Ultimate (UTS), MPa 890
690 to 730
Tensile Strength: Yield (Proof), MPa 840
270 to 350

Thermal Properties

Latent Heat of Fusion, J/g 410
230
Maximum Temperature: Mechanical, °C 310
220
Melting Completion (Liquidus), °C 1580
1040
Melting Onset (Solidus), °C 1530
1030
Specific Heat Capacity, J/kg-K 550
440
Thermal Conductivity, W/m-K 7.8
59
Thermal Expansion, µm/m-K 9.4
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
12
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
13

Otherwise Unclassified Properties

Base Metal Price, % relative 36
27
Density, g/cm3 4.5
8.2
Embodied Carbon, kg CO2/kg material 30
3.2
Embodied Energy, MJ/kg 480
53
Embodied Water, L/kg 190
400

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
68 to 77
Resilience: Unit (Modulus of Resilience), kJ/m3 3390
320 to 550
Stiffness to Weight: Axial, points 13
7.6
Stiffness to Weight: Bending, points 35
20
Strength to Weight: Axial, points 55
23 to 25
Strength to Weight: Bending, points 46
21 to 22
Thermal Diffusivity, mm2/s 3.2
16
Thermal Shock Resistance, points 65
25 to 26

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 4.0 to 6.0
10 to 11.5
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
82.8 to 88
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.5
2.0 to 4.5
Manganese (Mn), % 0
0 to 0.3
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.2
0
Silicon (Si), % 0
0 to 0.25
Tin (Sn), % 2.0 to 3.0
0 to 0.2
Titanium (Ti), % 89.8 to 94
0
Residuals, % 0 to 0.4
0 to 0.5