MakeItFrom.com
Menu (ESC)

Grade 6 Titanium vs. C64800 Bronze

Grade 6 titanium belongs to the titanium alloys classification, while C64800 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade 6 titanium and the bottom bar is C64800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
120
Elongation at Break, % 11
8.0
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 39
44
Shear Strength, MPa 530
380
Tensile Strength: Ultimate (UTS), MPa 890
640
Tensile Strength: Yield (Proof), MPa 840
630

Thermal Properties

Latent Heat of Fusion, J/g 410
220
Maximum Temperature: Mechanical, °C 310
200
Melting Completion (Liquidus), °C 1580
1090
Melting Onset (Solidus), °C 1530
1030
Specific Heat Capacity, J/kg-K 550
390
Thermal Conductivity, W/m-K 7.8
260
Thermal Expansion, µm/m-K 9.4
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
65
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
66

Otherwise Unclassified Properties

Base Metal Price, % relative 36
33
Density, g/cm3 4.5
8.9
Embodied Carbon, kg CO2/kg material 30
2.7
Embodied Energy, MJ/kg 480
43
Embodied Water, L/kg 190
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
51
Resilience: Unit (Modulus of Resilience), kJ/m3 3390
1680
Stiffness to Weight: Axial, points 13
7.4
Stiffness to Weight: Bending, points 35
18
Strength to Weight: Axial, points 55
20
Strength to Weight: Bending, points 46
19
Thermal Diffusivity, mm2/s 3.2
75
Thermal Shock Resistance, points 65
23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 4.0 to 6.0
0
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 0
0 to 0.090
Cobalt (Co), % 0
1.0 to 3.0
Copper (Cu), % 0
92.4 to 98.8
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.5
0 to 1.0
Lead (Pb), % 0
0 to 0.050
Nickel (Ni), % 0
0 to 0.5
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.5
Silicon (Si), % 0
0.2 to 1.0
Tin (Sn), % 2.0 to 3.0
0 to 0.5
Titanium (Ti), % 89.8 to 94
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0 to 0.4
0 to 0.5