MakeItFrom.com
Menu (ESC)

Grade 6 Titanium vs. S31727 Stainless Steel

Grade 6 titanium belongs to the titanium alloys classification, while S31727 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is grade 6 titanium and the bottom bar is S31727 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 11
40
Fatigue Strength, MPa 290
240
Poisson's Ratio 0.32
0.28
Reduction in Area, % 27
56
Shear Modulus, GPa 39
78
Shear Strength, MPa 530
430
Tensile Strength: Ultimate (UTS), MPa 890
630
Tensile Strength: Yield (Proof), MPa 840
270

Thermal Properties

Latent Heat of Fusion, J/g 410
290
Maximum Temperature: Mechanical, °C 310
1010
Melting Completion (Liquidus), °C 1580
1440
Melting Onset (Solidus), °C 1530
1390
Specific Heat Capacity, J/kg-K 550
470
Thermal Expansion, µm/m-K 9.4
16

Otherwise Unclassified Properties

Base Metal Price, % relative 36
24
Density, g/cm3 4.5
8.0
Embodied Carbon, kg CO2/kg material 30
4.7
Embodied Energy, MJ/kg 480
64
Embodied Water, L/kg 190
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
200
Resilience: Unit (Modulus of Resilience), kJ/m3 3390
190
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 55
22
Strength to Weight: Bending, points 46
20
Thermal Shock Resistance, points 65
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 4.0 to 6.0
0
Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 0
17.5 to 19
Copper (Cu), % 0
2.8 to 4.0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.5
53.7 to 61.3
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
3.8 to 4.5
Nickel (Ni), % 0
14.5 to 16.5
Nitrogen (N), % 0 to 0.030
0.15 to 0.21
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 2.0 to 3.0
0
Titanium (Ti), % 89.8 to 94
0
Residuals, % 0 to 0.4
0