MakeItFrom.com
Menu (ESC)

Grade 7 Titanium vs. ASTM A182 Grade F6b

Grade 7 titanium belongs to the titanium alloys classification, while ASTM A182 grade F6b belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 7 titanium and the bottom bar is ASTM A182 grade F6b.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
260
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 24
18
Fatigue Strength, MPa 250
440
Poisson's Ratio 0.32
0.28
Reduction in Area, % 34
51
Shear Modulus, GPa 38
76
Shear Strength, MPa 270
530
Tensile Strength: Ultimate (UTS), MPa 420
850
Tensile Strength: Yield (Proof), MPa 340
710

Thermal Properties

Latent Heat of Fusion, J/g 420
280
Maximum Temperature: Mechanical, °C 320
750
Melting Completion (Liquidus), °C 1660
1450
Melting Onset (Solidus), °C 1610
1400
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 22
25
Thermal Expansion, µm/m-K 9.2
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 7.2
3.2

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 47
2.2
Embodied Energy, MJ/kg 800
30
Embodied Water, L/kg 470
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 95
140
Resilience: Unit (Modulus of Resilience), kJ/m3 560
1280
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 26
30
Strength to Weight: Bending, points 28
26
Thermal Diffusivity, mm2/s 8.9
6.7
Thermal Shock Resistance, points 31
31

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.080
0 to 0.15
Chromium (Cr), % 0
11.5 to 13.5
Copper (Cu), % 0
0 to 0.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
81.2 to 87.1
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0.4 to 0.6
Nickel (Ni), % 0
1.0 to 2.0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.25
0
Palladium (Pd), % 0.12 to 0.25
0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 98.7 to 99.88
0
Residuals, % 0 to 0.4
0