MakeItFrom.com
Menu (ESC)

Grade 7 Titanium vs. SAE-AISI 1086 Steel

Grade 7 titanium belongs to the titanium alloys classification, while SAE-AISI 1086 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is grade 7 titanium and the bottom bar is SAE-AISI 1086 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
220 to 260
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 24
11
Fatigue Strength, MPa 250
300 to 360
Poisson's Ratio 0.32
0.29
Reduction in Area, % 34
28 to 45
Shear Modulus, GPa 38
72
Shear Strength, MPa 270
450 to 520
Tensile Strength: Ultimate (UTS), MPa 420
760 to 870
Tensile Strength: Yield (Proof), MPa 340
480 to 580

Thermal Properties

Latent Heat of Fusion, J/g 420
240
Maximum Temperature: Mechanical, °C 320
400
Melting Completion (Liquidus), °C 1660
1460
Melting Onset (Solidus), °C 1610
1410
Specific Heat Capacity, J/kg-K 540
470
Thermal Conductivity, W/m-K 22
50
Thermal Expansion, µm/m-K 9.2
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 7.2
8.1

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 47
1.4
Embodied Energy, MJ/kg 800
19
Embodied Water, L/kg 470
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 95
79 to 84
Resilience: Unit (Modulus of Resilience), kJ/m3 560
610 to 890
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 26
27 to 31
Strength to Weight: Bending, points 28
24 to 26
Thermal Diffusivity, mm2/s 8.9
14
Thermal Shock Resistance, points 31
26 to 30

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.080
0.8 to 0.93
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
98.5 to 98.9
Manganese (Mn), % 0
0.3 to 0.5
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.25
0
Palladium (Pd), % 0.12 to 0.25
0
Phosphorus (P), % 0
0 to 0.040
Sulfur (S), % 0
0 to 0.050
Titanium (Ti), % 98.7 to 99.88
0
Residuals, % 0 to 0.4
0