MakeItFrom.com
Menu (ESC)

Grade 9 Titanium vs. 354.0 Aluminum

Grade 9 titanium belongs to the titanium alloys classification, while 354.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade 9 titanium and the bottom bar is 354.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
71
Elongation at Break, % 11 to 17
2.4 to 3.0
Fatigue Strength, MPa 330 to 480
92 to 120
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
27
Tensile Strength: Ultimate (UTS), MPa 700 to 960
360 to 380
Tensile Strength: Yield (Proof), MPa 540 to 830
280 to 310

Thermal Properties

Latent Heat of Fusion, J/g 410
530
Maximum Temperature: Mechanical, °C 330
170
Melting Completion (Liquidus), °C 1640
600
Melting Onset (Solidus), °C 1590
550
Specific Heat Capacity, J/kg-K 550
900
Thermal Conductivity, W/m-K 8.1
130
Thermal Expansion, µm/m-K 9.1
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
32
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
110

Otherwise Unclassified Properties

Base Metal Price, % relative 37
9.5
Density, g/cm3 4.5
2.7
Embodied Carbon, kg CO2/kg material 36
7.8
Embodied Energy, MJ/kg 580
150
Embodied Water, L/kg 150
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 89 to 110
8.6 to 9.8
Resilience: Unit (Modulus of Resilience), kJ/m3 1380 to 3220
540 to 670
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 35
52
Strength to Weight: Axial, points 43 to 60
37 to 39
Strength to Weight: Bending, points 39 to 48
42 to 44
Thermal Diffusivity, mm2/s 3.3
52
Thermal Shock Resistance, points 52 to 71
17 to 18

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
87.3 to 89.4
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
1.6 to 2.0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0 to 0.2
Magnesium (Mg), % 0
0.4 to 0.6
Manganese (Mn), % 0
0 to 0.1
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Silicon (Si), % 0
8.6 to 9.4
Titanium (Ti), % 92.6 to 95.5
0 to 0.2
Vanadium (V), % 2.0 to 3.0
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15