MakeItFrom.com
Menu (ESC)

Grade 9 Titanium vs. 359.0 Aluminum

Grade 9 titanium belongs to the titanium alloys classification, while 359.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade 9 titanium and the bottom bar is 359.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
71
Elongation at Break, % 11 to 17
3.8 to 4.9
Fatigue Strength, MPa 330 to 480
100
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
27
Shear Strength, MPa 430 to 580
220 to 230
Tensile Strength: Ultimate (UTS), MPa 700 to 960
340 to 350
Tensile Strength: Yield (Proof), MPa 540 to 830
250 to 280

Thermal Properties

Latent Heat of Fusion, J/g 410
530
Maximum Temperature: Mechanical, °C 330
170
Melting Completion (Liquidus), °C 1640
600
Melting Onset (Solidus), °C 1590
570
Specific Heat Capacity, J/kg-K 550
910
Thermal Conductivity, W/m-K 8.1
140
Thermal Expansion, µm/m-K 9.1
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
35
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
120

Otherwise Unclassified Properties

Base Metal Price, % relative 37
9.5
Density, g/cm3 4.5
2.6
Embodied Carbon, kg CO2/kg material 36
8.0
Embodied Energy, MJ/kg 580
150
Embodied Water, L/kg 150
1090

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 89 to 110
12 to 15
Resilience: Unit (Modulus of Resilience), kJ/m3 1380 to 3220
450 to 540
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 35
54
Strength to Weight: Axial, points 43 to 60
37 to 38
Strength to Weight: Bending, points 39 to 48
42 to 43
Thermal Diffusivity, mm2/s 3.3
59
Thermal Shock Resistance, points 52 to 71
16 to 17

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
88.9 to 91
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
0 to 0.2
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0 to 0.2
Magnesium (Mg), % 0
0.5 to 0.7
Manganese (Mn), % 0
0 to 0.1
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Silicon (Si), % 0
8.5 to 9.5
Titanium (Ti), % 92.6 to 95.5
0 to 0.2
Vanadium (V), % 2.0 to 3.0
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15