MakeItFrom.com
Menu (ESC)

Grade 9 Titanium vs. 4047 Aluminum

Grade 9 titanium belongs to the titanium alloys classification, while 4047 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade 9 titanium and the bottom bar is 4047 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
72
Elongation at Break, % 11 to 17
3.4
Fatigue Strength, MPa 330 to 480
45
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
27
Shear Strength, MPa 430 to 580
69
Tensile Strength: Ultimate (UTS), MPa 700 to 960
120
Tensile Strength: Yield (Proof), MPa 540 to 830
64

Thermal Properties

Latent Heat of Fusion, J/g 410
570
Maximum Temperature: Mechanical, °C 330
160
Melting Completion (Liquidus), °C 1640
580
Melting Onset (Solidus), °C 1590
580
Specific Heat Capacity, J/kg-K 550
900
Thermal Conductivity, W/m-K 8.1
130
Thermal Expansion, µm/m-K 9.1
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
33
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
120

Otherwise Unclassified Properties

Base Metal Price, % relative 37
9.5
Density, g/cm3 4.5
2.5
Embodied Carbon, kg CO2/kg material 36
7.7
Embodied Energy, MJ/kg 580
140
Embodied Water, L/kg 150
1050

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 89 to 110
3.5
Resilience: Unit (Modulus of Resilience), kJ/m3 1380 to 3220
28
Stiffness to Weight: Axial, points 13
16
Stiffness to Weight: Bending, points 35
55
Strength to Weight: Axial, points 43 to 60
13
Strength to Weight: Bending, points 39 to 48
21
Thermal Diffusivity, mm2/s 3.3
59
Thermal Shock Resistance, points 52 to 71
5.6

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 2.5 to 3.5
85.3 to 89
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
0 to 0.3
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0 to 0.8
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0
0 to 0.15
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Silicon (Si), % 0
11 to 13
Titanium (Ti), % 92.6 to 95.5
0
Vanadium (V), % 2.0 to 3.0
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0 to 0.4
0 to 0.15