MakeItFrom.com
Menu (ESC)

Grade 9 Titanium vs. 5051A Aluminum

Grade 9 titanium belongs to the titanium alloys classification, while 5051A aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is grade 9 titanium and the bottom bar is 5051A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
68
Elongation at Break, % 11 to 17
18 to 21
Fatigue Strength, MPa 330 to 480
51 to 61
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
26
Shear Strength, MPa 430 to 580
110
Tensile Strength: Ultimate (UTS), MPa 700 to 960
170
Tensile Strength: Yield (Proof), MPa 540 to 830
56

Thermal Properties

Latent Heat of Fusion, J/g 410
400
Maximum Temperature: Mechanical, °C 330
190
Melting Completion (Liquidus), °C 1640
640
Melting Onset (Solidus), °C 1590
610
Specific Heat Capacity, J/kg-K 550
900
Thermal Conductivity, W/m-K 8.1
150
Thermal Expansion, µm/m-K 9.1
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
39
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
130

Otherwise Unclassified Properties

Base Metal Price, % relative 37
9.5
Density, g/cm3 4.5
2.7
Embodied Carbon, kg CO2/kg material 36
8.5
Embodied Energy, MJ/kg 580
150
Embodied Water, L/kg 150
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 89 to 110
24 to 27
Resilience: Unit (Modulus of Resilience), kJ/m3 1380 to 3220
23
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
50
Strength to Weight: Axial, points 43 to 60
17 to 18
Strength to Weight: Bending, points 39 to 48
25
Thermal Diffusivity, mm2/s 3.3
63
Thermal Shock Resistance, points 52 to 71
7.6

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 2.5 to 3.5
96.1 to 98.6
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 0
0 to 0.050
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0 to 0.45
Magnesium (Mg), % 0
1.4 to 2.1
Manganese (Mn), % 0
0 to 0.25
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Silicon (Si), % 0
0 to 0.3
Titanium (Ti), % 92.6 to 95.5
0 to 0.1
Vanadium (V), % 2.0 to 3.0
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0 to 0.4
0 to 0.15

Comparable Variants