MakeItFrom.com
Menu (ESC)

Grade 9 Titanium vs. EN 1.4110 Stainless Steel

Grade 9 titanium belongs to the titanium alloys classification, while EN 1.4110 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 9 titanium and the bottom bar is EN 1.4110 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 11 to 17
11 to 14
Fatigue Strength, MPa 330 to 480
250 to 730
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
76
Shear Strength, MPa 430 to 580
470 to 1030
Tensile Strength: Ultimate (UTS), MPa 700 to 960
770 to 1720
Tensile Strength: Yield (Proof), MPa 540 to 830
430 to 1330

Thermal Properties

Latent Heat of Fusion, J/g 410
280
Maximum Temperature: Mechanical, °C 330
790
Melting Completion (Liquidus), °C 1640
1440
Melting Onset (Solidus), °C 1590
1400
Specific Heat Capacity, J/kg-K 550
480
Thermal Conductivity, W/m-K 8.1
30
Thermal Expansion, µm/m-K 9.1
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 37
8.0
Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 36
2.3
Embodied Energy, MJ/kg 580
33
Embodied Water, L/kg 150
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 89 to 110
90 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 1380 to 3220
480 to 4550
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 43 to 60
28 to 62
Strength to Weight: Bending, points 39 to 48
24 to 41
Thermal Diffusivity, mm2/s 3.3
8.1
Thermal Shock Resistance, points 52 to 71
27 to 60

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 2.5 to 3.5
0
Carbon (C), % 0 to 0.080
0.48 to 0.6
Chromium (Cr), % 0
13 to 15
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
81.4 to 86
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0.5 to 0.8
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 92.6 to 95.5
0
Vanadium (V), % 2.0 to 3.0
0 to 0.15
Residuals, % 0 to 0.4
0

Comparable Variants