MakeItFrom.com
Menu (ESC)

Grade 9 Titanium vs. EN 1.4606 Stainless Steel

Grade 9 titanium belongs to the titanium alloys classification, while EN 1.4606 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 9 titanium and the bottom bar is EN 1.4606 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 11 to 17
23 to 39
Fatigue Strength, MPa 330 to 480
240 to 420
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 40
75
Shear Strength, MPa 430 to 580
410 to 640
Tensile Strength: Ultimate (UTS), MPa 700 to 960
600 to 1020
Tensile Strength: Yield (Proof), MPa 540 to 830
280 to 630

Thermal Properties

Latent Heat of Fusion, J/g 410
300
Maximum Temperature: Mechanical, °C 330
910
Melting Completion (Liquidus), °C 1640
1430
Melting Onset (Solidus), °C 1590
1380
Specific Heat Capacity, J/kg-K 550
470
Thermal Conductivity, W/m-K 8.1
14
Thermal Expansion, µm/m-K 9.1
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.2

Otherwise Unclassified Properties

Base Metal Price, % relative 37
26
Density, g/cm3 4.5
7.9
Embodied Carbon, kg CO2/kg material 36
6.0
Embodied Energy, MJ/kg 580
87
Embodied Water, L/kg 150
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 89 to 110
190 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 1380 to 3220
200 to 1010
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 43 to 60
21 to 36
Strength to Weight: Bending, points 39 to 48
20 to 28
Thermal Diffusivity, mm2/s 3.3
3.7
Thermal Shock Resistance, points 52 to 71
21 to 35

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 2.5 to 3.5
0 to 0.35
Boron (B), % 0
0.0010 to 0.010
Carbon (C), % 0 to 0.080
0 to 0.080
Chromium (Cr), % 0
13 to 16
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
49.2 to 59
Manganese (Mn), % 0
1.0 to 2.0
Molybdenum (Mo), % 0
1.0 to 1.5
Nickel (Ni), % 0
24 to 27
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 92.6 to 95.5
1.9 to 2.3
Vanadium (V), % 2.0 to 3.0
0.1 to 0.5
Residuals, % 0 to 0.4
0