MakeItFrom.com
Menu (ESC)

Grade 9 Titanium vs. EN 1.4986 Stainless Steel

Grade 9 titanium belongs to the titanium alloys classification, while EN 1.4986 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 9 titanium and the bottom bar is EN 1.4986 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 11 to 17
18
Fatigue Strength, MPa 330 to 480
350
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
77
Shear Strength, MPa 430 to 580
460
Tensile Strength: Ultimate (UTS), MPa 700 to 960
750
Tensile Strength: Yield (Proof), MPa 540 to 830
560

Thermal Properties

Latent Heat of Fusion, J/g 410
290
Maximum Temperature: Mechanical, °C 330
940
Melting Completion (Liquidus), °C 1640
1450
Melting Onset (Solidus), °C 1590
1400
Specific Heat Capacity, J/kg-K 550
470
Thermal Conductivity, W/m-K 8.1
15
Thermal Expansion, µm/m-K 9.1
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 37
25
Density, g/cm3 4.5
7.9
Embodied Carbon, kg CO2/kg material 36
4.8
Embodied Energy, MJ/kg 580
67
Embodied Water, L/kg 150
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 89 to 110
120
Resilience: Unit (Modulus of Resilience), kJ/m3 1380 to 3220
790
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 43 to 60
26
Strength to Weight: Bending, points 39 to 48
23
Thermal Diffusivity, mm2/s 3.3
4.0
Thermal Shock Resistance, points 52 to 71
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 2.5 to 3.5
0
Boron (B), % 0
0.050 to 0.1
Carbon (C), % 0 to 0.080
0.040 to 0.1
Chromium (Cr), % 0
15.5 to 17.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
59.4 to 66.6
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
1.6 to 2.0
Nickel (Ni), % 0
15.5 to 17.5
Niobium (Nb), % 0
0.4 to 1.2
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0.3 to 0.6
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 92.6 to 95.5
0
Vanadium (V), % 2.0 to 3.0
0
Residuals, % 0 to 0.4
0