MakeItFrom.com
Menu (ESC)

Grade 9 Titanium vs. CC140C Copper

Grade 9 titanium belongs to the titanium alloys classification, while CC140C copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 9 titanium and the bottom bar is CC140C copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 11 to 17
11
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 40
44
Tensile Strength: Ultimate (UTS), MPa 700 to 960
340
Tensile Strength: Yield (Proof), MPa 540 to 830
230

Thermal Properties

Latent Heat of Fusion, J/g 410
210
Maximum Temperature: Mechanical, °C 330
200
Melting Completion (Liquidus), °C 1640
1100
Melting Onset (Solidus), °C 1590
1040
Specific Heat Capacity, J/kg-K 550
390
Thermal Conductivity, W/m-K 8.1
310
Thermal Expansion, µm/m-K 9.1
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
77
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
78

Otherwise Unclassified Properties

Base Metal Price, % relative 37
31
Density, g/cm3 4.5
8.9
Embodied Carbon, kg CO2/kg material 36
2.6
Embodied Energy, MJ/kg 580
41
Embodied Water, L/kg 150
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 89 to 110
34
Resilience: Unit (Modulus of Resilience), kJ/m3 1380 to 3220
220
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 35
18
Strength to Weight: Axial, points 43 to 60
10
Strength to Weight: Bending, points 39 to 48
12
Thermal Diffusivity, mm2/s 3.3
89
Thermal Shock Resistance, points 52 to 71
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 2.5 to 3.5
0
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 0
0.4 to 1.2
Copper (Cu), % 0
98.8 to 99.6
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Titanium (Ti), % 92.6 to 95.5
0
Vanadium (V), % 2.0 to 3.0
0
Residuals, % 0 to 0.4
0