MakeItFrom.com
Menu (ESC)

Grade 9 Titanium vs. C93700 Bronze

Grade 9 titanium belongs to the titanium alloys classification, while C93700 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is grade 9 titanium and the bottom bar is C93700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
99
Elongation at Break, % 11 to 17
20
Fatigue Strength, MPa 330 to 480
90
Poisson's Ratio 0.32
0.35
Shear Modulus, GPa 40
37
Tensile Strength: Ultimate (UTS), MPa 700 to 960
240
Tensile Strength: Yield (Proof), MPa 540 to 830
130

Thermal Properties

Latent Heat of Fusion, J/g 410
170
Maximum Temperature: Mechanical, °C 330
140
Melting Completion (Liquidus), °C 1640
930
Melting Onset (Solidus), °C 1590
760
Specific Heat Capacity, J/kg-K 550
350
Thermal Conductivity, W/m-K 8.1
47
Thermal Expansion, µm/m-K 9.1
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
10
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
10

Otherwise Unclassified Properties

Base Metal Price, % relative 37
33
Density, g/cm3 4.5
8.9
Embodied Carbon, kg CO2/kg material 36
3.5
Embodied Energy, MJ/kg 580
57
Embodied Water, L/kg 150
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 89 to 110
40
Resilience: Unit (Modulus of Resilience), kJ/m3 1380 to 3220
79
Stiffness to Weight: Axial, points 13
6.2
Stiffness to Weight: Bending, points 35
17
Strength to Weight: Axial, points 43 to 60
7.5
Strength to Weight: Bending, points 39 to 48
9.6
Thermal Diffusivity, mm2/s 3.3
15
Thermal Shock Resistance, points 52 to 71
9.4

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 2.5 to 3.5
0 to 0.0050
Antimony (Sb), % 0
0 to 0.5
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
78 to 82
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0 to 0.15
Lead (Pb), % 0
8.0 to 11
Nickel (Ni), % 0
0 to 1.0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0
0 to 0.080
Tin (Sn), % 0
9.0 to 11
Titanium (Ti), % 92.6 to 95.5
0
Vanadium (V), % 2.0 to 3.0
0
Zinc (Zn), % 0
0 to 0.8
Residuals, % 0 to 0.4
0 to 1.0