MakeItFrom.com
Menu (ESC)

Grade 9 Titanium vs. N06650 Nickel

Grade 9 titanium belongs to the titanium alloys classification, while N06650 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 9 titanium and the bottom bar is N06650 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 11 to 17
50
Fatigue Strength, MPa 330 to 480
420
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 40
82
Shear Strength, MPa 430 to 580
640
Tensile Strength: Ultimate (UTS), MPa 700 to 960
900
Tensile Strength: Yield (Proof), MPa 540 to 830
460

Thermal Properties

Latent Heat of Fusion, J/g 410
320
Maximum Temperature: Mechanical, °C 330
980
Melting Completion (Liquidus), °C 1640
1500
Melting Onset (Solidus), °C 1590
1450
Specific Heat Capacity, J/kg-K 550
440
Thermal Expansion, µm/m-K 9.1
12

Otherwise Unclassified Properties

Base Metal Price, % relative 37
60
Density, g/cm3 4.5
8.6
Embodied Carbon, kg CO2/kg material 36
10
Embodied Energy, MJ/kg 580
140
Embodied Water, L/kg 150
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 89 to 110
380
Resilience: Unit (Modulus of Resilience), kJ/m3 1380 to 3220
490
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
23
Strength to Weight: Axial, points 43 to 60
29
Strength to Weight: Bending, points 39 to 48
24
Thermal Shock Resistance, points 52 to 71
24

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 2.5 to 3.5
0.050 to 0.5
Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 0
19 to 21
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 0
0 to 0.3
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
12 to 16
Manganese (Mn), % 0
0 to 0.5
Molybdenum (Mo), % 0
9.5 to 12.5
Nickel (Ni), % 0
44.4 to 58.9
Niobium (Nb), % 0
0.050 to 0.5
Nitrogen (N), % 0 to 0.030
0.050 to 0.2
Oxygen (O), % 0 to 0.15
0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 92.6 to 95.5
0
Tungsten (W), % 0
0.5 to 2.5
Vanadium (V), % 2.0 to 3.0
0
Residuals, % 0 to 0.4
0