MakeItFrom.com
Menu (ESC)

Grade 9 Titanium vs. N08700 Stainless Steel

Grade 9 titanium belongs to the titanium alloys classification, while N08700 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 9 titanium and the bottom bar is N08700 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 11 to 17
32
Fatigue Strength, MPa 330 to 480
210
Poisson's Ratio 0.32
0.28
Reduction in Area, % 28
45
Shear Modulus, GPa 40
79
Shear Strength, MPa 430 to 580
410
Tensile Strength: Ultimate (UTS), MPa 700 to 960
620
Tensile Strength: Yield (Proof), MPa 540 to 830
270

Thermal Properties

Latent Heat of Fusion, J/g 410
300
Maximum Temperature: Mechanical, °C 330
1100
Melting Completion (Liquidus), °C 1640
1450
Melting Onset (Solidus), °C 1590
1400
Specific Heat Capacity, J/kg-K 550
470
Thermal Conductivity, W/m-K 8.1
13
Thermal Expansion, µm/m-K 9.1
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 37
32
Density, g/cm3 4.5
8.1
Embodied Carbon, kg CO2/kg material 36
6.0
Embodied Energy, MJ/kg 580
82
Embodied Water, L/kg 150
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 89 to 110
160
Resilience: Unit (Modulus of Resilience), kJ/m3 1380 to 3220
180
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 43 to 60
21
Strength to Weight: Bending, points 39 to 48
20
Thermal Diffusivity, mm2/s 3.3
3.5
Thermal Shock Resistance, points 52 to 71
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 2.5 to 3.5
0
Carbon (C), % 0 to 0.080
0 to 0.040
Chromium (Cr), % 0
19 to 23
Copper (Cu), % 0
0 to 0.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
42 to 52.7
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
4.3 to 5.0
Nickel (Ni), % 0
24 to 26
Niobium (Nb), % 0
0 to 0.4
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 92.6 to 95.5
0
Vanadium (V), % 2.0 to 3.0
0
Residuals, % 0 to 0.4
0