MakeItFrom.com
Menu (ESC)

Grade C-5 Titanium vs. 1100 Aluminum

Grade C-5 titanium belongs to the titanium alloys classification, while 1100 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade C-5 titanium and the bottom bar is 1100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
69
Elongation at Break, % 6.7
1.1 to 32
Fatigue Strength, MPa 510
32 to 71
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
26
Tensile Strength: Ultimate (UTS), MPa 1000
86 to 170
Tensile Strength: Yield (Proof), MPa 940
28 to 150

Thermal Properties

Latent Heat of Fusion, J/g 410
400
Maximum Temperature: Mechanical, °C 340
180
Melting Completion (Liquidus), °C 1610
660
Melting Onset (Solidus), °C 1560
640
Specific Heat Capacity, J/kg-K 560
900
Thermal Conductivity, W/m-K 7.1
220
Thermal Expansion, µm/m-K 9.6
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
59
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
190

Otherwise Unclassified Properties

Base Metal Price, % relative 36
9.0
Density, g/cm3 4.4
2.7
Embodied Carbon, kg CO2/kg material 38
8.2
Embodied Energy, MJ/kg 610
150
Embodied Water, L/kg 200
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 66
0.76 to 52
Resilience: Unit (Modulus of Resilience), kJ/m3 4200
5.7 to 170
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
50
Strength to Weight: Axial, points 63
8.7 to 17
Strength to Weight: Bending, points 50
16 to 25
Thermal Diffusivity, mm2/s 2.9
90
Thermal Shock Resistance, points 71
3.7 to 7.4

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
99 to 99.95
Carbon (C), % 0 to 0.1
0
Copper (Cu), % 0
0.050 to 0.2
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
0 to 1.0
Manganese (Mn), % 0
0 to 0.050
Nickel (Ni), % 0 to 0.050
0
Oxygen (O), % 0 to 0.25
0
Silicon (Si), % 0
0 to 1.0
Titanium (Ti), % 87.5 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15