MakeItFrom.com
Menu (ESC)

Grade C-5 Titanium vs. 2017 Aluminum

Grade C-5 titanium belongs to the titanium alloys classification, while 2017 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade C-5 titanium and the bottom bar is 2017 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
71
Elongation at Break, % 6.7
12 to 18
Fatigue Strength, MPa 510
90 to 130
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
27
Tensile Strength: Ultimate (UTS), MPa 1000
190 to 430
Tensile Strength: Yield (Proof), MPa 940
76 to 260

Thermal Properties

Latent Heat of Fusion, J/g 410
390
Maximum Temperature: Mechanical, °C 340
190
Melting Completion (Liquidus), °C 1610
640
Melting Onset (Solidus), °C 1560
510
Specific Heat Capacity, J/kg-K 560
880
Thermal Conductivity, W/m-K 7.1
150
Thermal Expansion, µm/m-K 9.6
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
38
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
110

Otherwise Unclassified Properties

Base Metal Price, % relative 36
10
Density, g/cm3 4.4
3.0
Embodied Carbon, kg CO2/kg material 38
8.0
Embodied Energy, MJ/kg 610
150
Embodied Water, L/kg 200
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 66
24 to 66
Resilience: Unit (Modulus of Resilience), kJ/m3 4200
41 to 470
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
46
Strength to Weight: Axial, points 63
17 to 40
Strength to Weight: Bending, points 50
24 to 42
Thermal Diffusivity, mm2/s 2.9
56
Thermal Shock Resistance, points 71
7.9 to 18

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
91.6 to 95.5
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 0
3.5 to 4.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
0 to 0.7
Magnesium (Mg), % 0
0.4 to 0.8
Manganese (Mn), % 0
0.4 to 1.0
Nickel (Ni), % 0 to 0.050
0
Oxygen (O), % 0 to 0.25
0
Silicon (Si), % 0
0.2 to 0.8
Titanium (Ti), % 87.5 to 91
0 to 0.15
Vanadium (V), % 3.5 to 4.5
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15