MakeItFrom.com
Menu (ESC)

Grade C-5 Titanium vs. 4007 Aluminum

Grade C-5 titanium belongs to the titanium alloys classification, while 4007 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade C-5 titanium and the bottom bar is 4007 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 310
32 to 44
Elastic (Young's, Tensile) Modulus, GPa 110
71
Elongation at Break, % 6.7
5.1 to 23
Fatigue Strength, MPa 510
46 to 88
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
27
Tensile Strength: Ultimate (UTS), MPa 1000
130 to 160
Tensile Strength: Yield (Proof), MPa 940
50 to 120

Thermal Properties

Latent Heat of Fusion, J/g 410
410
Maximum Temperature: Mechanical, °C 340
170
Melting Completion (Liquidus), °C 1610
650
Melting Onset (Solidus), °C 1560
590
Specific Heat Capacity, J/kg-K 560
890
Thermal Conductivity, W/m-K 7.1
170
Thermal Expansion, µm/m-K 9.6
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
42
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
140

Otherwise Unclassified Properties

Base Metal Price, % relative 36
9.5
Density, g/cm3 4.4
2.8
Embodied Carbon, kg CO2/kg material 38
8.1
Embodied Energy, MJ/kg 610
150
Embodied Water, L/kg 200
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 66
7.4 to 23
Resilience: Unit (Modulus of Resilience), kJ/m3 4200
18 to 110
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
49
Strength to Weight: Axial, points 63
12 to 15
Strength to Weight: Bending, points 50
20 to 23
Thermal Diffusivity, mm2/s 2.9
67
Thermal Shock Resistance, points 71
5.5 to 6.7

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
94.1 to 97.6
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 0
0.050 to 0.25
Cobalt (Co), % 0
0 to 0.050
Copper (Cu), % 0
0 to 0.2
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
0.4 to 1.0
Magnesium (Mg), % 0
0 to 0.2
Manganese (Mn), % 0
0.8 to 1.5
Nickel (Ni), % 0 to 0.050
0.15 to 0.7
Oxygen (O), % 0 to 0.25
0
Silicon (Si), % 0
1.0 to 1.7
Titanium (Ti), % 87.5 to 91
0 to 0.1
Vanadium (V), % 3.5 to 4.5
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15