MakeItFrom.com
Menu (ESC)

Grade C-5 Titanium vs. EN 1.4303 Stainless Steel

Grade C-5 titanium belongs to the titanium alloys classification, while EN 1.4303 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade C-5 titanium and the bottom bar is EN 1.4303 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 310
190 to 270
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 6.7
13 to 49
Fatigue Strength, MPa 510
220 to 320
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
77
Tensile Strength: Ultimate (UTS), MPa 1000
590 to 900
Tensile Strength: Yield (Proof), MPa 940
230 to 560

Thermal Properties

Latent Heat of Fusion, J/g 410
290
Maximum Temperature: Mechanical, °C 340
940
Melting Completion (Liquidus), °C 1610
1420
Melting Onset (Solidus), °C 1560
1380
Specific Heat Capacity, J/kg-K 560
480
Thermal Conductivity, W/m-K 7.1
15
Thermal Expansion, µm/m-K 9.6
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 36
17
Density, g/cm3 4.4
7.8
Embodied Carbon, kg CO2/kg material 38
3.2
Embodied Energy, MJ/kg 610
46
Embodied Water, L/kg 200
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 66
110 to 230
Resilience: Unit (Modulus of Resilience), kJ/m3 4200
140 to 800
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 63
21 to 32
Strength to Weight: Bending, points 50
20 to 26
Thermal Diffusivity, mm2/s 2.9
4.0
Thermal Shock Resistance, points 71
13 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.1
0 to 0.060
Chromium (Cr), % 0
17 to 19
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
64.8 to 72
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0 to 0.050
11 to 13
Nitrogen (N), % 0
0 to 0.1
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 87.5 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0