MakeItFrom.com
Menu (ESC)

Grade C-5 Titanium vs. SAE-AISI 1043 Steel

Grade C-5 titanium belongs to the titanium alloys classification, while SAE-AISI 1043 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade C-5 titanium and the bottom bar is SAE-AISI 1043 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 310
190 to 200
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 6.7
13 to 18
Fatigue Strength, MPa 510
230 to 390
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 40
73
Tensile Strength: Ultimate (UTS), MPa 1000
650 to 710
Tensile Strength: Yield (Proof), MPa 940
350 to 600

Thermal Properties

Latent Heat of Fusion, J/g 410
250
Maximum Temperature: Mechanical, °C 340
400
Melting Completion (Liquidus), °C 1610
1460
Melting Onset (Solidus), °C 1560
1420
Specific Heat Capacity, J/kg-K 560
470
Thermal Conductivity, W/m-K 7.1
51
Thermal Expansion, µm/m-K 9.6
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 36
1.8
Density, g/cm3 4.4
7.8
Embodied Carbon, kg CO2/kg material 38
1.4
Embodied Energy, MJ/kg 610
18
Embodied Water, L/kg 200
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 66
87 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 4200
320 to 980
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 63
23 to 25
Strength to Weight: Bending, points 50
21 to 22
Thermal Diffusivity, mm2/s 2.9
14
Thermal Shock Resistance, points 71
21 to 22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.1
0.4 to 0.47
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
98.4 to 98.9
Manganese (Mn), % 0
0.7 to 1.0
Nickel (Ni), % 0 to 0.050
0
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.040
Sulfur (S), % 0
0 to 0.050
Titanium (Ti), % 87.5 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0