MakeItFrom.com
Menu (ESC)

Grade C-5 Titanium vs. C90700 Bronze

Grade C-5 titanium belongs to the titanium alloys classification, while C90700 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade C-5 titanium and the bottom bar is C90700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 310
90
Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 6.7
12
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 40
40
Tensile Strength: Ultimate (UTS), MPa 1000
330
Tensile Strength: Yield (Proof), MPa 940
180

Thermal Properties

Latent Heat of Fusion, J/g 410
190
Maximum Temperature: Mechanical, °C 340
170
Melting Completion (Liquidus), °C 1610
1000
Melting Onset (Solidus), °C 1560
830
Specific Heat Capacity, J/kg-K 560
370
Thermal Conductivity, W/m-K 7.1
71
Thermal Expansion, µm/m-K 9.6
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
10
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
10

Otherwise Unclassified Properties

Base Metal Price, % relative 36
35
Density, g/cm3 4.4
8.7
Embodied Carbon, kg CO2/kg material 38
3.7
Embodied Energy, MJ/kg 610
60
Embodied Water, L/kg 200
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 66
34
Resilience: Unit (Modulus of Resilience), kJ/m3 4200
150
Stiffness to Weight: Axial, points 13
6.9
Stiffness to Weight: Bending, points 35
18
Strength to Weight: Axial, points 63
10
Strength to Weight: Bending, points 50
12
Thermal Diffusivity, mm2/s 2.9
22
Thermal Shock Resistance, points 71
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.5 to 6.8
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Carbon (C), % 0 to 0.1
0
Copper (Cu), % 0
88 to 90
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
0 to 0.15
Lead (Pb), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.050
0 to 0.5
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
10 to 12
Titanium (Ti), % 87.5 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0 to 0.4
0 to 0.6