MakeItFrom.com
Menu (ESC)

Grade C-6 Titanium vs. 1350 Aluminum

Grade C-6 titanium belongs to the titanium alloys classification, while 1350 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade C-6 titanium and the bottom bar is 1350 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 290
20 to 45
Elastic (Young's, Tensile) Modulus, GPa 100
68
Elongation at Break, % 9.0
1.4 to 30
Fatigue Strength, MPa 460
24 to 50
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 39
26
Tensile Strength: Ultimate (UTS), MPa 890
68 to 190
Tensile Strength: Yield (Proof), MPa 830
25 to 170

Thermal Properties

Latent Heat of Fusion, J/g 410
400
Maximum Temperature: Mechanical, °C 310
170
Melting Completion (Liquidus), °C 1580
660
Melting Onset (Solidus), °C 1530
650
Specific Heat Capacity, J/kg-K 550
900
Thermal Conductivity, W/m-K 7.8
230
Thermal Expansion, µm/m-K 9.8
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
61 to 62
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
200 to 210

Otherwise Unclassified Properties

Base Metal Price, % relative 36
9.5
Density, g/cm3 4.5
2.7
Embodied Carbon, kg CO2/kg material 30
8.3
Embodied Energy, MJ/kg 480
160
Embodied Water, L/kg 190
1200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 78
0.77 to 54
Resilience: Unit (Modulus of Resilience), kJ/m3 3300
4.4 to 200
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
50
Strength to Weight: Axial, points 55
7.0 to 19
Strength to Weight: Bending, points 46
14 to 27
Thermal Diffusivity, mm2/s 3.2
96
Thermal Shock Resistance, points 63
3.0 to 8.2

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 4.0 to 6.0
99.5 to 100
Boron (B), % 0
0 to 0.050
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 0
0 to 0.010
Copper (Cu), % 0
0 to 0.050
Gallium (Ga), % 0
0 to 0.030
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.5
0 to 0.4
Manganese (Mn), % 0
0 to 0.010
Nickel (Ni), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Silicon (Si), % 0
0 to 0.1
Tin (Sn), % 2.0 to 3.0
0
Titanium (Ti), % 89.7 to 94
0 to 0.020
Vanadium (V), % 0
0 to 0.020
Zinc (Zn), % 0
0 to 0.050
Residuals, % 0 to 0.4
0 to 0.1