MakeItFrom.com
Menu (ESC)

Grade C-6 Titanium vs. Nickel 600

Grade C-6 titanium belongs to the titanium alloys classification, while nickel 600 belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade C-6 titanium and the bottom bar is nickel 600.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 9.0
3.4 to 35
Fatigue Strength, MPa 460
220 to 300
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 39
75
Tensile Strength: Ultimate (UTS), MPa 890
650 to 990
Tensile Strength: Yield (Proof), MPa 830
270 to 760

Thermal Properties

Latent Heat of Fusion, J/g 410
310
Maximum Temperature: Mechanical, °C 310
1100
Melting Completion (Liquidus), °C 1580
1410
Melting Onset (Solidus), °C 1530
1350
Specific Heat Capacity, J/kg-K 550
460
Thermal Conductivity, W/m-K 7.8
14
Thermal Expansion, µm/m-K 9.8
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 36
55
Density, g/cm3 4.5
8.5
Embodied Carbon, kg CO2/kg material 30
9.0
Embodied Energy, MJ/kg 480
130
Embodied Water, L/kg 190
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 78
31 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 3300
190 to 1490
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
23
Strength to Weight: Axial, points 55
21 to 32
Strength to Weight: Bending, points 46
20 to 26
Thermal Diffusivity, mm2/s 3.2
3.6
Thermal Shock Resistance, points 63
19 to 29

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 4.0 to 6.0
0
Carbon (C), % 0 to 0.1
0 to 0.15
Chromium (Cr), % 0
14 to 17
Copper (Cu), % 0
0 to 0.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.5
6.0 to 10
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0 to 0.050
72 to 80
Oxygen (O), % 0 to 0.2
0
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 2.0 to 3.0
0
Titanium (Ti), % 89.7 to 94
0
Residuals, % 0 to 0.4
0