MakeItFrom.com
Menu (ESC)

Grade C-6 Titanium vs. N06219 Nickel

Grade C-6 titanium belongs to the titanium alloys classification, while N06219 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade C-6 titanium and the bottom bar is N06219 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 9.0
48
Fatigue Strength, MPa 460
270
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 39
79
Tensile Strength: Ultimate (UTS), MPa 890
730
Tensile Strength: Yield (Proof), MPa 830
300

Thermal Properties

Latent Heat of Fusion, J/g 410
330
Maximum Temperature: Mechanical, °C 310
980
Melting Completion (Liquidus), °C 1580
1430
Melting Onset (Solidus), °C 1530
1380
Specific Heat Capacity, J/kg-K 550
450
Thermal Conductivity, W/m-K 7.8
10
Thermal Expansion, µm/m-K 9.8
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 36
60
Density, g/cm3 4.5
8.5
Embodied Carbon, kg CO2/kg material 30
11
Embodied Energy, MJ/kg 480
140
Embodied Water, L/kg 190
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 78
280
Resilience: Unit (Modulus of Resilience), kJ/m3 3300
230
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
23
Strength to Weight: Axial, points 55
24
Strength to Weight: Bending, points 46
21
Thermal Diffusivity, mm2/s 3.2
2.7
Thermal Shock Resistance, points 63
21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 4.0 to 6.0
0 to 0.5
Carbon (C), % 0 to 0.1
0 to 0.050
Chromium (Cr), % 0
18 to 22
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 0
0 to 0.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.5
2.0 to 4.0
Manganese (Mn), % 0
0 to 0.5
Molybdenum (Mo), % 0
7.0 to 9.0
Nickel (Ni), % 0 to 0.050
60.8 to 72.3
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0.7 to 1.1
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 2.0 to 3.0
0
Titanium (Ti), % 89.7 to 94
0 to 0.5
Residuals, % 0 to 0.4
0