MakeItFrom.com
Menu (ESC)

Grade C-6 Titanium vs. S17400 Stainless Steel

Grade C-6 titanium belongs to the titanium alloys classification, while S17400 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade C-6 titanium and the bottom bar is S17400 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 290
280 to 440
Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 9.0
11 to 21
Fatigue Strength, MPa 460
380 to 670
Poisson's Ratio 0.32
0.28
Rockwell C Hardness 32
27 to 43
Shear Modulus, GPa 39
75
Tensile Strength: Ultimate (UTS), MPa 890
910 to 1390
Tensile Strength: Yield (Proof), MPa 830
580 to 1250

Thermal Properties

Latent Heat of Fusion, J/g 410
280
Maximum Temperature: Mechanical, °C 310
850
Melting Completion (Liquidus), °C 1580
1440
Melting Onset (Solidus), °C 1530
1400
Specific Heat Capacity, J/kg-K 550
480
Thermal Conductivity, W/m-K 7.8
17
Thermal Expansion, µm/m-K 9.8
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 36
14
Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 30
2.7
Embodied Energy, MJ/kg 480
39
Embodied Water, L/kg 190
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 78
140 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 3300
880 to 4060
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 55
32 to 49
Strength to Weight: Bending, points 46
27 to 35
Thermal Diffusivity, mm2/s 3.2
4.5
Thermal Shock Resistance, points 63
30 to 46

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 4.0 to 6.0
0
Carbon (C), % 0 to 0.1
0 to 0.070
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 0
3.0 to 5.0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.5
70.4 to 78.9
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0 to 0.050
3.0 to 5.0
Niobium (Nb), % 0
0.15 to 0.45
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 2.0 to 3.0
0
Titanium (Ti), % 89.7 to 94
0
Residuals, % 0 to 0.4
0