MakeItFrom.com
Menu (ESC)

Grade C-6 Titanium vs. S45000 Stainless Steel

Grade C-6 titanium belongs to the titanium alloys classification, while S45000 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade C-6 titanium and the bottom bar is S45000 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 290
280 to 410
Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 9.0
6.8 to 14
Fatigue Strength, MPa 460
330 to 650
Poisson's Ratio 0.32
0.28
Rockwell C Hardness 32
28 to 44
Shear Modulus, GPa 39
76
Tensile Strength: Ultimate (UTS), MPa 890
980 to 1410
Tensile Strength: Yield (Proof), MPa 830
580 to 1310

Thermal Properties

Latent Heat of Fusion, J/g 410
280
Maximum Temperature: Mechanical, °C 310
840
Melting Completion (Liquidus), °C 1580
1440
Melting Onset (Solidus), °C 1530
1390
Specific Heat Capacity, J/kg-K 550
480
Thermal Conductivity, W/m-K 7.8
17
Thermal Expansion, µm/m-K 9.8
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 36
13
Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 30
2.8
Embodied Energy, MJ/kg 480
39
Embodied Water, L/kg 190
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 78
94 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 3300
850 to 4400
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 55
35 to 50
Strength to Weight: Bending, points 46
28 to 36
Thermal Diffusivity, mm2/s 3.2
4.5
Thermal Shock Resistance, points 63
33 to 47

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 4.0 to 6.0
0
Carbon (C), % 0 to 0.1
0 to 0.050
Chromium (Cr), % 0
14 to 16
Copper (Cu), % 0
1.3 to 1.8
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.5
72.1 to 79.3
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0.5 to 1.0
Nickel (Ni), % 0 to 0.050
5.0 to 7.0
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 2.0 to 3.0
0
Titanium (Ti), % 89.7 to 94
0
Residuals, % 0 to 0.4
0