MakeItFrom.com
Menu (ESC)

Grade CU5MCuC Nickel vs. 6065 Aluminum

Grade CU5MCuC nickel belongs to the nickel alloys classification, while 6065 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade CU5MCuC nickel and the bottom bar is 6065 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 22
4.5 to 11
Fatigue Strength, MPa 170
96 to 110
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Tensile Strength: Ultimate (UTS), MPa 580
310 to 400
Tensile Strength: Yield (Proof), MPa 270
270 to 380

Thermal Properties

Latent Heat of Fusion, J/g 310
400
Maximum Temperature: Mechanical, °C 980
180
Melting Completion (Liquidus), °C 1420
640
Melting Onset (Solidus), °C 1370
590
Specific Heat Capacity, J/kg-K 460
890
Thermal Expansion, µm/m-K 13
23

Otherwise Unclassified Properties

Base Metal Price, % relative 45
11
Density, g/cm3 8.2
2.8
Embodied Carbon, kg CO2/kg material 7.7
8.4
Embodied Energy, MJ/kg 110
150
Embodied Water, L/kg 230
1200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
17 to 34
Resilience: Unit (Modulus of Resilience), kJ/m3 190
540 to 1040
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
49
Strength to Weight: Axial, points 20
31 to 40
Strength to Weight: Bending, points 19
36 to 43
Thermal Shock Resistance, points 16
14 to 18

Alloy Composition

Aluminum (Al), % 0
94.4 to 98.2
Bismuth (Bi), % 0
0.5 to 1.5
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 19.5 to 23.5
0 to 0.15
Copper (Cu), % 1.5 to 3.5
0.15 to 0.4
Iron (Fe), % 22.2 to 37.9
0 to 0.7
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0
0.8 to 1.2
Manganese (Mn), % 0 to 1.0
0 to 0.15
Molybdenum (Mo), % 2.5 to 3.5
0
Nickel (Ni), % 38 to 44
0
Niobium (Nb), % 0.6 to 1.2
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
0.4 to 0.8
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.25
Zirconium (Zr), % 0
0 to 0.15
Residuals, % 0
0 to 0.15