MakeItFrom.com
Menu (ESC)

Grade CW2M Nickel vs. Grade 29 Titanium

Grade CW2M nickel belongs to the nickel alloys classification, while grade 29 titanium belongs to the titanium alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is grade CW2M nickel and the bottom bar is grade 29 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 23
6.8 to 11
Fatigue Strength, MPa 190
460 to 510
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 83
40
Tensile Strength: Ultimate (UTS), MPa 560
930 to 940
Tensile Strength: Yield (Proof), MPa 310
850 to 870

Thermal Properties

Latent Heat of Fusion, J/g 330
410
Maximum Temperature: Mechanical, °C 960
340
Melting Completion (Liquidus), °C 1520
1610
Melting Onset (Solidus), °C 1460
1560
Specific Heat Capacity, J/kg-K 430
560
Thermal Expansion, µm/m-K 12
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 70
36
Density, g/cm3 8.8
4.5
Embodied Carbon, kg CO2/kg material 12
39
Embodied Energy, MJ/kg 170
640
Embodied Water, L/kg 290
410

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
62 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 220
3420 to 3540
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
35
Strength to Weight: Axial, points 18
58 to 59
Strength to Weight: Bending, points 17
47 to 48
Thermal Shock Resistance, points 16
68 to 69

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
5.5 to 6.5
Carbon (C), % 0 to 0.020
0 to 0.080
Chromium (Cr), % 15 to 17.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 2.0
0 to 0.25
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 15 to 17.5
0
Nickel (Ni), % 60.1 to 70
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.13
Phosphorus (P), % 0 to 0.030
0
Ruthenium (Ru), % 0
0.080 to 0.14
Silicon (Si), % 0 to 0.8
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
88 to 90.9
Tungsten (W), % 0 to 1.0
0
Vanadium (V), % 0
3.5 to 4.5
Residuals, % 0
0 to 0.4