MakeItFrom.com
Menu (ESC)

Grade CW2M Nickel vs. Grade 37 Titanium

Grade CW2M nickel belongs to the nickel alloys classification, while grade 37 titanium belongs to the titanium alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is grade CW2M nickel and the bottom bar is grade 37 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 23
22
Fatigue Strength, MPa 190
170
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 83
40
Tensile Strength: Ultimate (UTS), MPa 560
390
Tensile Strength: Yield (Proof), MPa 310
250

Thermal Properties

Latent Heat of Fusion, J/g 330
420
Maximum Temperature: Mechanical, °C 960
310
Melting Completion (Liquidus), °C 1520
1650
Melting Onset (Solidus), °C 1460
1600
Specific Heat Capacity, J/kg-K 430
550
Thermal Expansion, µm/m-K 12
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 70
36
Density, g/cm3 8.8
4.5
Embodied Carbon, kg CO2/kg material 12
31
Embodied Energy, MJ/kg 170
500
Embodied Water, L/kg 290
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
76
Resilience: Unit (Modulus of Resilience), kJ/m3 220
280
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
35
Strength to Weight: Axial, points 18
24
Strength to Weight: Bending, points 17
26
Thermal Shock Resistance, points 16
29

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
1.0 to 2.0
Carbon (C), % 0 to 0.020
0 to 0.080
Chromium (Cr), % 15 to 17.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 2.0
0 to 0.3
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 15 to 17.5
0
Nickel (Ni), % 60.1 to 70
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.8
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
96.9 to 99
Tungsten (W), % 0 to 1.0
0
Residuals, % 0
0 to 0.4