MakeItFrom.com
Menu (ESC)

Grade CW2M Nickel vs. Grade C-6 Titanium

Grade CW2M nickel belongs to the nickel alloys classification, while grade C-6 titanium belongs to the titanium alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is grade CW2M nickel and the bottom bar is grade C-6 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
100
Elongation at Break, % 23
9.0
Fatigue Strength, MPa 190
460
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 83
39
Tensile Strength: Ultimate (UTS), MPa 560
890
Tensile Strength: Yield (Proof), MPa 310
830

Thermal Properties

Latent Heat of Fusion, J/g 330
410
Maximum Temperature: Mechanical, °C 960
310
Melting Completion (Liquidus), °C 1520
1580
Melting Onset (Solidus), °C 1460
1530
Specific Heat Capacity, J/kg-K 430
550
Thermal Expansion, µm/m-K 12
9.8

Otherwise Unclassified Properties

Base Metal Price, % relative 70
36
Density, g/cm3 8.8
4.5
Embodied Carbon, kg CO2/kg material 12
30
Embodied Energy, MJ/kg 170
480
Embodied Water, L/kg 290
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
78
Resilience: Unit (Modulus of Resilience), kJ/m3 220
3300
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
35
Strength to Weight: Axial, points 18
55
Strength to Weight: Bending, points 17
46
Thermal Shock Resistance, points 16
63

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
4.0 to 6.0
Carbon (C), % 0 to 0.020
0 to 0.1
Chromium (Cr), % 15 to 17.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 2.0
0 to 0.5
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 15 to 17.5
0
Nickel (Ni), % 60.1 to 70
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.8
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
2.0 to 3.0
Titanium (Ti), % 0
89.7 to 94
Tungsten (W), % 0 to 1.0
0
Residuals, % 0
0 to 0.4