MakeItFrom.com
Menu (ESC)

Grade CW2M Nickel vs. C17500 Copper

Grade CW2M nickel belongs to the nickel alloys classification, while C17500 copper belongs to the copper alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is grade CW2M nickel and the bottom bar is C17500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
120
Elongation at Break, % 23
6.0 to 30
Fatigue Strength, MPa 190
170 to 310
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 83
45
Tensile Strength: Ultimate (UTS), MPa 560
310 to 860
Tensile Strength: Yield (Proof), MPa 310
170 to 760

Thermal Properties

Latent Heat of Fusion, J/g 330
220
Maximum Temperature: Mechanical, °C 960
220
Melting Completion (Liquidus), °C 1520
1060
Melting Onset (Solidus), °C 1460
1020
Specific Heat Capacity, J/kg-K 430
390
Thermal Expansion, µm/m-K 12
18

Otherwise Unclassified Properties

Base Metal Price, % relative 70
60
Density, g/cm3 8.8
8.9
Embodied Carbon, kg CO2/kg material 12
4.7
Embodied Energy, MJ/kg 170
73
Embodied Water, L/kg 290
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
30 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 220
120 to 2390
Stiffness to Weight: Axial, points 13
7.5
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 18
9.7 to 27
Strength to Weight: Bending, points 17
11 to 23
Thermal Shock Resistance, points 16
11 to 29

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.2
Beryllium (Be), % 0
0.4 to 0.7
Carbon (C), % 0 to 0.020
0
Chromium (Cr), % 15 to 17.5
0
Cobalt (Co), % 0
2.4 to 2.7
Copper (Cu), % 0
95.6 to 97.2
Iron (Fe), % 0 to 2.0
0 to 0.1
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 15 to 17.5
0
Nickel (Ni), % 60.1 to 70
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.8
0 to 0.2
Sulfur (S), % 0 to 0.030
0
Tungsten (W), % 0 to 1.0
0
Residuals, % 0
0 to 0.5