MakeItFrom.com
Menu (ESC)

Grade CW6M Nickel vs. Sintered 2014 Aluminum

Grade CW6M nickel belongs to the nickel alloys classification, while sintered 2014 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade CW6M nickel and the bottom bar is sintered 2014 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
70
Elongation at Break, % 29
0.5 to 3.0
Fatigue Strength, MPa 210
52 to 100
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 84
26
Tensile Strength: Ultimate (UTS), MPa 560
140 to 290
Tensile Strength: Yield (Proof), MPa 310
97 to 280

Thermal Properties

Latent Heat of Fusion, J/g 330
390
Maximum Temperature: Mechanical, °C 970
170
Melting Completion (Liquidus), °C 1530
650
Melting Onset (Solidus), °C 1470
560
Specific Heat Capacity, J/kg-K 430
880
Thermal Expansion, µm/m-K 12
23

Otherwise Unclassified Properties

Base Metal Price, % relative 65
10
Density, g/cm3 8.8
2.9
Embodied Carbon, kg CO2/kg material 13
8.0
Embodied Energy, MJ/kg 170
150
Embodied Water, L/kg 300
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
1.0 to 5.7
Resilience: Unit (Modulus of Resilience), kJ/m3 220
68 to 560
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 23
47
Strength to Weight: Axial, points 18
13 to 27
Strength to Weight: Bending, points 17
20 to 33
Thermal Shock Resistance, points 16
6.2 to 13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
91.5 to 96.3
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 17 to 20
0
Copper (Cu), % 0
3.5 to 5.0
Iron (Fe), % 0 to 3.0
0
Magnesium (Mg), % 0
0.2 to 0.8
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 17 to 20
0
Nickel (Ni), % 54.9 to 66
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 1.2
Sulfur (S), % 0 to 0.030
0
Residuals, % 0
0 to 1.5