MakeItFrom.com
Menu (ESC)

Grade CW6MC Nickel vs. 206.0 Aluminum

Grade CW6MC nickel belongs to the nickel alloys classification, while 206.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade CW6MC nickel and the bottom bar is 206.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
71
Elongation at Break, % 28
8.4 to 12
Fatigue Strength, MPa 210
88 to 210
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 79
27
Tensile Strength: Ultimate (UTS), MPa 540
330 to 440
Tensile Strength: Yield (Proof), MPa 310
190 to 350

Thermal Properties

Latent Heat of Fusion, J/g 330
390
Maximum Temperature: Mechanical, °C 980
170
Melting Completion (Liquidus), °C 1480
650
Melting Onset (Solidus), °C 1430
570
Specific Heat Capacity, J/kg-K 440
880
Thermal Conductivity, W/m-K 11
120
Thermal Expansion, µm/m-K 12
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
33
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
99

Otherwise Unclassified Properties

Base Metal Price, % relative 80
11
Density, g/cm3 8.6
3.0
Embodied Carbon, kg CO2/kg material 14
8.0
Embodied Energy, MJ/kg 200
150
Embodied Water, L/kg 290
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
24 to 49
Resilience: Unit (Modulus of Resilience), kJ/m3 240
270 to 840
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
46
Strength to Weight: Axial, points 18
30 to 40
Strength to Weight: Bending, points 17
35 to 42
Thermal Diffusivity, mm2/s 2.8
46
Thermal Shock Resistance, points 15
17 to 23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
93.3 to 95.3
Carbon (C), % 0 to 0.060
0
Chromium (Cr), % 20 to 23
0
Copper (Cu), % 0
4.2 to 5.0
Iron (Fe), % 0 to 5.0
0 to 0.15
Magnesium (Mg), % 0
0.15 to 0.35
Manganese (Mn), % 0 to 1.0
0.2 to 0.5
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 55.4 to 68.9
0 to 0.050
Niobium (Nb), % 3.2 to 4.5
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 1.0
0 to 0.1
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0.15 to 0.3
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15