MakeItFrom.com
Menu (ESC)

Grade CW6MC Nickel vs. ASTM A182 Grade F5

Grade CW6MC nickel belongs to the nickel alloys classification, while ASTM A182 grade F5 belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade CW6MC nickel and the bottom bar is ASTM A182 grade F5.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 28
22
Fatigue Strength, MPa 210
220
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 79
74
Tensile Strength: Ultimate (UTS), MPa 540
540
Tensile Strength: Yield (Proof), MPa 310
310

Thermal Properties

Latent Heat of Fusion, J/g 330
260
Maximum Temperature: Mechanical, °C 980
510
Melting Completion (Liquidus), °C 1480
1460
Melting Onset (Solidus), °C 1430
1420
Specific Heat Capacity, J/kg-K 440
470
Thermal Conductivity, W/m-K 11
40
Thermal Expansion, µm/m-K 12
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
8.1
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
9.4

Otherwise Unclassified Properties

Base Metal Price, % relative 80
4.5
Density, g/cm3 8.6
7.8
Embodied Carbon, kg CO2/kg material 14
1.8
Embodied Energy, MJ/kg 200
24
Embodied Water, L/kg 290
69

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
100
Resilience: Unit (Modulus of Resilience), kJ/m3 240
260
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
25
Strength to Weight: Axial, points 18
19
Strength to Weight: Bending, points 17
19
Thermal Diffusivity, mm2/s 2.8
11
Thermal Shock Resistance, points 15
15

Alloy Composition

Carbon (C), % 0 to 0.060
0 to 0.15
Chromium (Cr), % 20 to 23
4.0 to 6.0
Iron (Fe), % 0 to 5.0
91.5 to 95.3
Manganese (Mn), % 0 to 1.0
0.3 to 0.6
Molybdenum (Mo), % 8.0 to 10
0.44 to 0.65
Nickel (Ni), % 55.4 to 68.9
0 to 0.5
Niobium (Nb), % 3.2 to 4.5
0
Phosphorus (P), % 0 to 0.015
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.030