MakeItFrom.com
Menu (ESC)

Grade CW6MC Nickel vs. EN 1.4526 Stainless Steel

Grade CW6MC nickel belongs to the nickel alloys classification, while EN 1.4526 stainless steel belongs to the iron alloys. They have a modest 22% of their average alloy composition in common, which, by itself, doesn't mean much. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade CW6MC nickel and the bottom bar is EN 1.4526 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 28
25
Fatigue Strength, MPa 210
230
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 79
77
Tensile Strength: Ultimate (UTS), MPa 540
540
Tensile Strength: Yield (Proof), MPa 310
330

Thermal Properties

Latent Heat of Fusion, J/g 330
280
Maximum Temperature: Mechanical, °C 980
880
Melting Completion (Liquidus), °C 1480
1450
Melting Onset (Solidus), °C 1430
1410
Specific Heat Capacity, J/kg-K 440
480
Thermal Conductivity, W/m-K 11
30
Thermal Expansion, µm/m-K 12
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 80
13
Density, g/cm3 8.6
7.7
Embodied Carbon, kg CO2/kg material 14
2.9
Embodied Energy, MJ/kg 200
41
Embodied Water, L/kg 290
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
120
Resilience: Unit (Modulus of Resilience), kJ/m3 240
280
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
25
Strength to Weight: Axial, points 18
19
Strength to Weight: Bending, points 17
19
Thermal Diffusivity, mm2/s 2.8
8.1
Thermal Shock Resistance, points 15
19

Alloy Composition

Carbon (C), % 0 to 0.060
0 to 0.080
Chromium (Cr), % 20 to 23
16 to 18
Iron (Fe), % 0 to 5.0
77.4 to 83.1
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 8.0 to 10
0.8 to 1.4
Nickel (Ni), % 55.4 to 68.9
0
Niobium (Nb), % 3.2 to 4.5
0.1 to 1.0
Nitrogen (N), % 0
0 to 0.040
Phosphorus (P), % 0 to 0.015
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.015